

DMMC-Software-Development-Kit

VERSION 2.0

Highlights

- DESY MMC API to reduce custom firmware development to a minimum
- Platform-independent environment with support for continuous integration
- Simple bring-up procedures without programming adapters
- Telemetry and remote debugging by using the feature set of the DMMC-STAMP SoM
- Maintained by DESY

Atmel MCU chip drivers Atmel

Features

Straight-forward firmware development: CMake based, VSCode® integrated and CI build via Docker®

High-level API for board-specific customization

Serial-over-IPMB (remote access of FPGA/SoC console)

Control of up to two FMC modules

Custom IPMI commands

Support of additional sensors

User FPGA/SoC in-system-update via HPM.1

DC/DC converter control

Complete AMC power management via PMBUS™

MTCA system information forwarding to user-FPGA/SoC

User-specific DMMC-STAMP SoM GPIO pin control

Example implementations for several AMCs available (e.g. DAMC-FMC2ZUP)

The DESY MMC Software Development Kit (DMMC-SDK) is the base for a hardware specific MMC firmware development for the DMMC-STAMP SoM. To extend the pre-programmed default firmware the DMMC-SDK keeps the needed adaptations easy and reduces the coding effort to a minimum.

Using the DESY MMC Libraries within a custom firmware enables the whole set of hardware features of the DMMC-STAMP. Useful features like I2C sensor readout via IPMI (e.g. temperatures or AMC/RTM power status signals) and remote debugging functions become available out-of-the-box. User programmable on-board components like FPGAs, SoC or CPLDs can be upgraded in-application without connecting any external programmers.

The DMMC-SDK provides a clear separation between the DESY MMC Library and users hardware specific implementations. This means that firmware porting to newly developed boards is possible with minimal effort. The DMMC-SDK comes with a specified build environment using Docker®. It is CMake based, VS Code® integrated and supports CI build without using any third-party development tools. Provided with the DMMC-SDK are example applications for the latest DESY AMC MMC implementations.

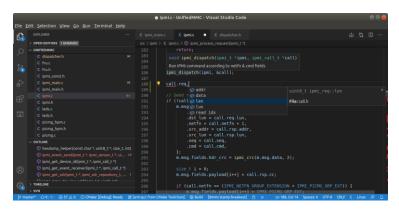


Figure 1: Visual Studio Code integration

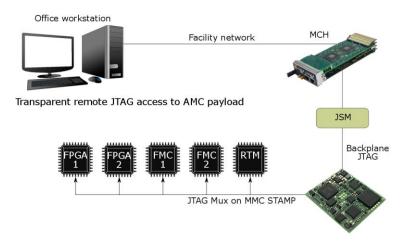


Figure 3: Remote debugging using the MicroTCA infrastructure

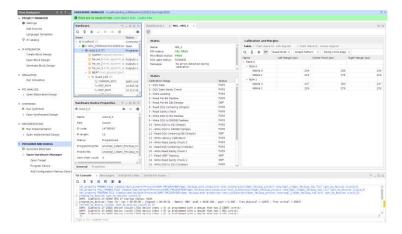


Figure 5: In-application debugging using the Xilinx Vivado™ tools

Figure 2: DMMC-STAMP SoM Breakout Board

\$ ipmitool -H	MCH100191.tech.lab -P'	"" -B
AMC Hot Swap	0x00	ok
049162C0F354	0x00	ok
STAMP Temp	28 degrees C	ok
AMC MP 3V3	3.41 Volts	ok
AMC PP 12V	12.68 Volts	ok
ADC0	0.03 Volts	ok
ADC1	0.08 Volts	ok
ADC2	0.03 Volts	ok
I_RTM MP 3V3	0.01 Amps	ok
I_RTM PP 12V	0.01 Amps	ok
CPLD Done	0xff	ok
RTM MP 3V3 PG	0x00	ok
RTM PP 12V PG	0x00	ok
RTM Fault	0x00	ok
PGood_A	0xff	ok
PGood_B	0xff	ok
FPGA1 Init	0x00	ok
FPGA1 Done	0x00	ok
FPGA2 Init	0x00	ok
FPGA2 Done	0×00	ok
Inlet Temp	34 degrees C	ok
Outlet Temp	31.50 degrees C	ok
DC/DC1 1V2	34.50 degrees C	ok
DC/DC2 Core	34 degrees C	ok

Figure 4: IPMI sensor readout

